PlanetLab Europe Basics

An open, shared platform for developing, deploying, and accessing planetary scale applications

Case for PlanetLab

Overview

- Global distributed system infrastructure
 - platform for long running services
 - testbed for network experiments
- Launched in March 2002

Why Use PlanetLab?

- Access to large scale distributed resources
- Run experiments with complete control over each node
- Scale from one to few to many nodes
- Monitor CPU and network traffic
- Deploy long-running experimental services

Why Use PlanetLab?

- How do I build a content delivery network?
- Proof: Does it work?
- Start with a few nodes, for content delivery system. Build up. Test to see if the system works as the system builds and grows, and is a large scale testbed

Example: CoDeeN (Princeton)

- Content Distribution Network
 - ~330 (open) caching proxy servers
 - Open to all users (see URL)
- Highly available (after lots of work!)
- Spawned many subprojects / services:
 - CoBlitz, scalable distribution of large files.
 - CoDeploy, efficient synchronization for slices.
 - CoDNS, fast and reliable name lookup.
 - CoMon, node monitoring for PlanetLab
 - CoTest, login debugging tool for nodes
 - PlanetSeer, distributed network anomaly tracing
- Illustrates how deployment of a real service spurs research
 - http://codeen.cs.princeton.edu/

Example: Overlay Routing

- Packets on the Internet are routed invisibly
- "A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable" --Leslie Lamport
- What if applications performed routing as an overlay of the existing Internet?
- PlanetLab is a perfect testbed for this type of research

PlanetLab History

 March 2002: Larry Peterson (Princeton) and David Culler (UC Berkeley and Intel Research) organize an "underground" meeting of researchers interested in planetary scale network services, and propose PlanetLab as a community testbed

About PlanetLab

- 1011 nodes around the world
 - 35 countries
 - 476 sites (universities, research labs)
 - more than 1000 researchers
- A collection of machines distributed over the globe
 - Most of the machines are hosted by research institutions
 - All of the machines are connected to the Internet Software
 - All PlanetLab machines are administered by a system called MyPLC
- The software is based on Fedora Core 8

Organizational Challenges

- PlanetLab Consortium Licensing Agreement
- Organization is responsible for the activities of their researchers
- Users may not use PlanetLab to disseminate copyrighted material
- PlanetLab tracks resources usage and maintains a list of published intentions
- Otherwise, PlanetLab is a free for all

The PlanetLab Consortium

- The consortium manages the responsibilities and the resources of PlanetLab Europe
- The OneLab2 project provides an open federated laboratory, built on PlanetLab Europe, which supports network research for the future internet
- The OneLab2 Consortium consists of 26 distinguished networking research teams from university and industrial laboratories: 21 from the European Union, two from Switzerland, two from Israel, and one from Australia
- A large-scale integrating project (IP) grant from the European Commission's FP7 IST program's FIRE initiative funds 6.3 million euro of OneLab2's 8.9 million euro budget. The project started September 1st, 2008, and runs for 27 months, following directly on its predecessor, the OneLab project

The PlanetLab Consortium

Membership

The Consortium includes eight membership levels

- Charter (300k € annual dues)
- Full (75k € annual dues)
- Associate (25k € annual dues)
- Sponsor (10k € annual dues)
- SME (1k € annual dues)
- Director (no annual dues)
- Academic (no annual dues)
- FP7 (no annual dues)

Charter Member 300k €

Benefits

- Invitation to attend Steering Committee meetings
- Direct Relationship with Director Members
- Unlimited Access to PlanetLab Europe Events
- Slices: Unlimited
- PlanetLab Europe Public Relations
- Author PlanetLab Europe Design Notes

- Active Participation in Steering Committee
- Active Participation in PlanetLab Europe Events
- Node Contribution
- Research Participant (Optional)

Full Member 75k €

Benefits

- Invitation to attend Steering Committee meetings
- Access to Director Members
- Unlimited Access to PlanetLab Europe Events
- Slices: 10
- PlanetLab Europe Public Relations
- Author PlanetLab Europe Design Notes

- Annual Steering Committee Participation
- Node Contribution
- Research Participant (Optional)

Associate Member 25k €

Benefits

- Unlimited Access to PlanetLab Europe Events
- Slices: 2
- PlanetLab Europe Public Relations
- Forum/Channel for Research Publication
- Access to Research Papers

- Node Contribution
- Research Participant (Optional)

Sponsor Member 10k €

Benefits

Access to PlanetLab Europe Events

• Access to Research Papers

SME Member 1k €

Benefits

- Participation in annual Steering Committee meetings is by invitation of the Director
- Access to Director Members
- Unlimited Access to PlanetLab Europe Events
- Slices: Negotiable
- PlanetLab Europe Public Relations
- Author PlanetLab Europe Design Notes

- Annual Steering Committee Participation
- Node Contribution
- Research Participant (Optional)

Director Member 0 €

Benefits

- Decision making for the PlanetLab Europe strategy and implementation
- Invitation to attend Steering Committee meetings
- Direct Relationship with Director Members
- Unlimited Access to PlanetLab Europe Events
- Slices: Unlimited
- PlanetLab Europe Public Relations
- Author PlanetLab Europe Design Notes

- Coordination of technical, administrative, and legal aspects of Planetlab Europe
- Active Participation in Steering Committee
- Active Participation in PlanetLab Europe Events
- Node Contribution
- Research Participant (Optional)

Academic Member 0 €

Benefits

- Participation in annual Steering Committee meetings is by invitation of the Director
- Access to Director Members
- Unlimited Access to PlanetLab Europe Events
- Slices: Negotiable
- PlanetLab Europe Public Relations
- Author PlanetLab Europe Design Notes

- Annual Steering Committee Participation
- Node Contribution
- Research Participant (Optional)

FP7 Member 0 €

Benefits

- Participation in annual Steering Committee meetings is by invitation of the Director
- Access to Director Members
- Unlimited Access to PlanetLab Europe Events
- Slices: Negotiable
- PlanetLab Europe Public Relations
- Author PlanetLab Europe Design Notes

- Annual Steering Committee Participation
- Node Contribution
- Research Participant (Optional)

The PlanetLab Consortium

- Node resources provided by member institutions
- Small "support" team NOC in Paris (UPMC)
- R&D team in Sophia Antipolis (INRIA)
- Documentation and Dissemination (HUJI, UPMC)

What is it used for?

- PlanetLab addresses the related problems of:
 - Deploying widely distributed services
 - Evaluating competing approaches in a realistic setting
 - Evolving the network architecture to better support such services
- So far, PlanetLab is highly successful at doing this

PlanetLab is not...

- A distributed supercomputer
- A simulation platform
- An Internet emulator
- An arena for repeatable experiments
- Completely representative of the current Internet
- Grid

PlanetLab is not the Grid

- The Grid aims at location transparency for large computations
 - "I don't care where this protein folding job runs as long as it's done by Monday"
- PlanetLab is all about small, long running services in specific locations
 - "I need to run a new secure file cache for the next 6 months in Seoul, Sydney, and Vancouver"

PlanetLab is not the Grid

- The Grid is about standardizing one particular paradigm for large scale utility computing
- PlanetLab provides a low level platform over which many distributed computing paradigms can be tried
 - You could build the Grid over PlanetLab's abstractions if you really wanted

PlanetLab is

- A testbed to support research work in distributed & P2P systems and networking
- Shared by many simultaneous users
- Enables users to work in relative isolation
- Uses a familiar API (Linux)
- Offers networking flexibility
- Is predictable, stable, and professionally managed

Using PlanetLab

- Central Website that manages
 - All accounts
 - All nodes
 - All resources
- Registering with PLC (your PlanetLab Central)
- 3 PLC
 - PL USA (planet-lab.com)
 - PL Europe (planet-lab.eu)
 - PL Japan (planet-lab.jp)

Terminology

- Principal Investigator (PI). The Principal Investigator is responsible for managing slices and users at each site. PIs are legally responsible for the behavior of the slices that they create. Most sites have only one PI (typically a faculty member at an educational institution or a project manager at a commercial institution).
- **Technical Contact (Tech Contact).** Each site is required to have at least one Technical Contact who is responsible for installation, maintenance, and monitoring of the site's nodes. The Tech Contact is the person we should contact when a node goes down or when an incident occurs. This is commonly a system administrator or graduate student. Be sure that they read the Technical Contact's Guide which describes their roles and responsibilities.
- **User** A user is anyone who develops and deploys applications on PlanetLab. PIs may also be users.

• Authorized Official is the person who can bind your institution contractually/legally. It is often the president or contracting officer. Even though academic and non-profit institutions do not pay a membership fee, we still require the signature of an authorized official.

PI's Roles and Responsibilities

 Oversight PIs are responsible for overseeing all slices that they create on behalf of the users at their site

Account management PIs can:

- Enable, disable, and delete user accounts
- Create slices
- Delete slices
- Assign users to slices
- Allocate resources to slices
- Node management PIs are responsible for the physical maintenance of the nodes at their site

To Use

- Join, sign up and sign the consortium agreement
- Free demonstration system

PlanetLab Architecture

PlanetLab Architecture

• **Site** A site is a physical location where PlanetLab nodes are located (e.g. Fraunhofer Institute or UCL)

• **Node** A node is a dedicated server that runs components of PlanetLab services

Terminology

• **Slice.** A slice is a set of allocated resources distributed across PlanetLab. To most users, a slice means UNIX shell access to private virtual servers on the some number of PlanetLab nodes. After being assigned to a slice, a user may assign nodes to it. Slices may be assigned to a user selected set of PlanetLab nodes. After nodes have been assigned to a slice, virtual servers for that slice are created on each of the assigned nodes. Slices have a finite lifetime and must be periodically renewed to remain valid. All data associated with a slice is deleted when the slice expires.

• **Sliver** A sliver is a slice running on a specific node. You can use ssh to login to a sliver on a specific node

Distributed Virtualization

- As a user you want to isolate from other activities on those nodes on which you run. The PL provides a level of isolation which gives you your own file system and process control
- You share CPU cycles and network bandwidth with other active slivers on each node
- The concept of slice aggregates the presence of your slivers within the system

Slices – hujiple_isis

Slices – upmcple_paristr

Federation

- Local consortium agreement defines responsibilities and liabilities of each partner
- Federation integrates the consortiums into a seamless global authority
- Formal Trust Relationships are the basis for this integration

Trust Relationships

Trust Relationships

- 1) PLC expresses trust in a user by issuing it credentials to access a slice
- 2) Users trust PLC to create slices on their behalf and inspect credentials
- 3) Owner trusts PLC to set users and map network activity to right user
- 4) PLC trusts owner to keep nodes physically secure

Global Federation

Security

- PlanetLab has been active for 6 years
- PlanetLab nodes are unfirewalled
- PlanetLab nodes have never been compromised
- Reason:

Security

- PlanetLab has been active for 6 years
- PlanetLab nodes are unfirewalled
- PlanetLab nodes have never been compromised
- Reason: Secret Powers

Security Architecture

- Node Operating System
 - isolates slivers
 - audits behavior
- PlanetLab Central (PLC)
 - remotely manages nodes
 - bootstrap services to instantiate and control slices
 - monitor sliver/node health

Node Architecture

Virtual Machine Monitor (VMM)

Hardware

VMM

- Linux
 - significant mindshare
- Vserver
 - scales to hundreds of VMs per node (12 MB each)

VMM

- Scheduling
 - CPU

fair share per sliver (guarantees possible)

- link bandwidth fair share per sliver average rate limit: 1.5Mbps (24 hr bucket size) peak rate limit: set by site (100 Mbps default)
- disk

5GB quota per sliver (limit runaway log files)

– memory

no limit

pl_mom resets biggest user at 90% utilization

VMM-Networking

- VNET
 - relies on Linux's Netfilter system
 - slivers should be able to send only...
 well formed IP
 packets to non-blacklisted hosts

VMM-Networking

- slivers should be able to receive only...
 packets related to connections that they
 initiated (e.g., replies)
 packets destined for bound ports (e.g., server
 requests)
- supports the following protocols:
 - TCP
 - UDP
 - ICMP
 - GRE and PPTP
- also supports virtual devices standard PF_PACKET behavior used to connect to a "virtual ISP"

Auditing & Monitoring

PlanetFlow

- Logs every outbound IP flow on every nodes retrieves packet headers, timestamps, context ids (batched)
- Used to audit traffic
- Aggregated and archived at PLC

Auditing & Monitoring

SliceStat

- Access to kernellevel/systemwide information
- Used by global monitoring services
- Used to performance debug services

Auditing & Monitoring

EverStats

- Monitors front-end for PlanetLab systems
- Designed to monitor node and slice activity
- Retrieves public data from MyPLC
- Polls the slicestats package located on each planetlab node to gather specific performance data
- Provides daily aggregate performance data

Node Status

				[25 Annahago 😳						
		5	Search				and	1 (
≑ P	≑ R	\$ SITE	\$ STATE	+ HOSTNAME	\$ TYPE	IP	≑ A	≑ s	\$?		
PLE	ñ.	hujiple	boot	planet1.cs.huji.ac.il	regular	132.65.240.100	1386	240			
PLE	11	hujiple	boot	planet2.cs.huji.ac.il	regular	132.65.240.101		201			
PLE	я	hujiple	boot	planet3.cs.huji.ac.il	regular	132.65.240.102		198			

		•	-	-	_
	u	100			100
-	٠	u	с.		
-	-	-	-	-	-

R = region

A = arch

S = number of slivers

? = status

Enter & or | in the search area to switch between AND and OR search modes

Hold down the shift key to select multiple columns to sort

FUTURE INTERNET TEST BEDS

Node Status

PLE	fr	supelecple	boot	pl1.rennes.supelec.fr	regular	193.54.192.41	i386	244	
PLC	edu	iub	boot	pl1.ucs.indiana.edu	regular	n/a	n/a	297	n/a

PLC	in	iitd	reinstall	agni.iitd.ernet.in	regular	n/a	n/a	257	n/a
PLC	es	sevilla	boot	ait05.us.es	regular	n/a	n/a	311	n/a

PLC	jp	osaka	disabled	int-pl1.ise.eng.osaka-u.ac.jp	regular	n/a	n/a	135	n/a
PLC	jp	osaka	disabled	int-pl2.ise.eng.osaka-u.ac.jp	regular	n/a	n/a	136	n/a

PLC	edu	vt	safeboot	billy.cc.vt.edu	regular	n/a	n/a	270	n/a
PLC	edu	vt	safeboot	bob.cc.vt.edu	regular	n/a	n/a	332	n/a

PLC	ch	epfl	boot	lsirextpc02.epfl.ch	regular	n/a	n/a	340	n/a
PLE	it	quantavisple	failboot	marie.iet.unipi.it	regular	131.114.53.188		35	

PlanetLab RPC Services

- PlanetLab has a number of built-in services
 - They are accessible via XML-RPC
 - discover available resources
 - create and configure a slice
 - resource allocation
- They are useful if you need to provision and manage long running services

PlanetLab User Services

- There are very few built-in services for users
- What you see on the web site is what you get!
- We will cover some services that will be integrated into the base system
- Most are already available on the production PlanetLab

Stork

- Package management facility for PlanetLab
- Deploy software to nodes automatically using the Stock GUI
- Saves disk space by sharing common files
- Downloads packages to a node only once (not once per slice)
- Secure repository for shared package

http://www.cs.arizona.edu/stork

Sirius

- What if you want the whole node for yourself
 - Or if you need multiple nodes
- Useful to minimize external factors
 - Other slivers using CPU or network
 - Very useful before paper deadlines
- Gives your slice increased CPU priority and network bandwidth on its nodes for some 30 minute period
- Other slivers on those nodes still run

PlanetLab Limitations

- PlanetLab provides administration and management
- It does not (yet) provide usability features
- In particular, no monitoring or resource discovery
- Third party systems have been developed and will be integrated into the core platform

СоТор

- Monitors local node, sliver and slice activity
- Available on all PlanetLab Nodes as:

http://<nodename>:3121

http://<nodename>:3120/cotop

CoTop: http://<nodename>:3120/cotop

cotop = 09:20:44 up 21 days, 12:10, 0 users, load average: 8.37, 7.41, 6.96 Tasks: 61 total, 1 running, 60 sleeping, 0 stopped, 0 zombie Cpu(s): 61.6% us, 33.6% sy, 0.0% ni, 0.1% id, 0.1% wa, 0.1% hi, 4.5% si Mem: 1033596k total, 1016580k used, 17016k free, 23492k buffers Swap: 1048568k total, 508692k used, 539876k free, 361060k cached

CTX TX1 TX15 RX1 RX15 #PR PMEMMB VMEMMB &CPU &MEM NAME

928	1	1	89	98	2	9.5	23.1	45.0	0.9	arizona_stork_install
531	7	6	6	6	6	9.3	68.9	37.0	0.9	columbia_salman
515	0	0	45	27	7	24.9	42.1	28.0	2.5	cmu_abwe
533	1029	1309	1039	1353	44	102.9	169.4	23.0	10.1	princeton_codeen
775	617	2073	208	158	6	35.8	267.6	11.0	3.5	nyu_d
695	6	5	6	6	6	51.6	692.5	11.0	5.1	umn_mcla0181
547	2	2	4	1	2	9.2	59.5	9.0	0.9	ufl_test0
0	0	0	0	0	98	95.9	420.9	6.0	9.4	root
663	5	6	655	785	9	27.0	80.8	2.0	2.7	utexas_measure
607	757	709	430	363	42	153.9	318.8	2.0	15.2	princeton_coblitz
558	18	21	21	21	3	26.7	215.9	2.0	2.6	ucb_bamboo
782	7	7	10	16	13	21.2	456.7	0.0	2.1	uka_oversim
527	0	0	0	0	3	10.6	196.3	0.0	1.0	byu_p2pweb
710	2	2	11	10	5	2.8	9.7	0.0	0.3	sfu_wang
794	15	15	9	9	3	6.8	54.2	0.0	0.7	unimelb_p2ppar
709	0	0	0	9	1	2.1	12.8	0.0	0.2	cmu_scaleron
887	0	0	0	9	1	2.2	12.8	0.0	0.2	sics_gradient
835	19	17	18	16	3	31.1	278.0	0.0	3.1	cornell_meridian
513	0	0	0	0	1	2.1	12.8	0.0	0.2	arizona_stork_blackbox_test
853	0	0	0	0	1	0.3	1.9	0.0	0.0	uw_geoloc4
914	0	0	0	0	6	6.2	31.4	0.0	0.6	utah_elab_24927
686	0	0	0	0	3	2.7	12.8	0.0	0.3	ucsd_mortar
631	5	5	5	5	41	30.6	292.4	0.0	3.0	princeton_coblitztest
665	0	0	0	0	26	26.6	97.2	0.0	2.6	google_highground
921	0	0	0	0	7	7.8	42.8	0.0	0.8	utah_svc_slice
575	0	0	0	0	2	5.3	39.4	0.0	0.5	tsinghua_lhq
834	43	41	3	4	59	97.6	253.7	0.0	9.6	princeton_comon

CoTop: http://<nodename>:3120/cotop

Date: 1221038584.542664 VMStat: 11 1 509148 50216 25336 363152 52 0 1084 1165 2438 4830 73 38 0 0 0 CPUUse: 29 100 DNSFail: 0.0 0.0 0.0 0.0 **RWFS: 53** Uptime: 1858378.05 Loads: 8.61 7.59 7.05 Timer: 44.405000 10.168162 FdTestHist: 0x0 ServTest: 0.579000 0.324433 Purks: 10.00 10.00 10.00 9.99 10.00 10.00 9.98 10.01 10.00 9,99 MemPress: 70 Test206: 206 0 0 0 DfDot: 20% 140,971 175,453 MemInfo: 0.985714 77.6876 48.5115 KernVer: 2.6.22.19 Burp: 23.2% CPUSpeed: 2.99514 FCNamex: Werewolf CPUHog: MemHog: TxHog: RxHog: ProcHog: TxRate: 0.000000 RxRate: 0.000000 NumSlices: 0 mostrecentcotop LiveSlices: 0

- Aggregate monitoring of nodes, slivers and slices <u>http://comon.cs.princeton.edu/</u>
- Node centric: <u>http://summer.cs.princeton.edu/status/</u>
- Slice centric: <u>http://summer.cs.princeton.edu/status/index_slice.html</u>

CoMon: Node Centric

CoMon PlanetLab Status (sort key: Name)

Part of the <u>Ca DeeN</u> project Updated Wed Sep 10 85:25:02 2008 EDT (GMT -0400) legend

Summaries: By Node (on p. dard) By Size (man.everage.tatal.size) By Ports (all) By Size (all) Problems (mades.sizes) Wir: <u>Auto</u> Resources (CPU, Men. BW) Efficiency (CPU, Men.) Usage (Sizes, Sizes, Sizes, Nodes)

Г	Natio	Resp Time	Node Type			CIPU Speed	1 Min Load	Timer Nas	Men See	Sup la	<u>Disk Sar</u>		BA Limit	0551 udp	Raw Ports		CPI Hog		<u>Tx Bog</u>	LFort Hog
4	address	SE Sala	Best State	Ken Ter	Date	Bes CPL	5 Min Load	Time: Arg	Non-Ad	SeapOat	Disk Used	FD Test	To Rote	<u>DX51 tap</u>	ICMP Ports	Nos 26	<u>CPU 5</u>	Proc Bog	Tr. 53	Nam LPort
1		Uptime	Ter. 04	FC Name	Deith	Sec CPL	<u>Sun Sies</u>	Core Nav	Trans Plan	Dik ih	GBFmg	10.27	2. 2.4	0.551 udp	Long Ports	Eas Tip	Nen Hog	Nam Proc	Rx Hog	Shert Heg
L		Last College				Free CPL	Line Sizes	Com Arg		District	Seap Test		-	D552 (ap	Snap Ports		Men S		Ro Ko	Num SPort
Г	phile1-c708 mildt ac at	0.265	Pad		5-10-2018	3.4	3.3	45.0	0.99	<u>50</u>	294.6		4080	105						
	138.252.66134 🕷 🌒	good 4 9 D	boat.	262219	5:25:14	96.05	2.0	111	855	265	221.21		0	105						
L	Southikm	0.005	mismatch		-0.015	9125	i	0.25	2	344	365	-	<u>0</u>	-10%		1				
Ē	oldel-c705 alibk ac at	0.265	2		6.10,7008	3.4	1.39	125.2	0.00	Q	294.6		4080	105			es d		391.0	
2	134 232 56 135 🦄 🍘	good	boat	2622.19	52514	64.0%	1.86	112	71%	<u>.</u>	55	050	3079	105		- 2	<u>90.0%</u>	<u>1001</u>	<u>96</u>	
L	SouthAm	0.005	mismatch	1022100E	<u>-0.01 S</u>	71.55	21	0.28	<u>100</u>	580	162.39	2,000	<u>908</u>	-10%		2	161%	~	289	
Ē								~									princton		arisos sort	
	phh1-ibc uni-khuac at	2005 200d	Prod	2622.19	5-10-2008	17.0%	100	10.1	3.71	- v	200.4	050	nune	17%			playment	<u>enete</u>	0	
2	143:205.172.11 🥌 📰	216D	boat:	Wearwolf	-0.00 5	8.0%	55	0.42	<u>2998</u> 108	<u>55</u>	196.61	good	0	163%		2	201/96 pwelc hielement	126	aritena storit.	
		0.005				94.6%	1	0.24	-	351	<u>145</u>		Ť	115			<u>74%</u>	_	0	

CoMon: Slice Centric

CoMon Slice Usage Totals (sort key: Slice Name)

Part of the <u>CoDeeN</u> project Updated Wed Sep 10 05:31:02 2008 EDT (GMT -0400) Summaries: By Node (<u>long, short</u>) By Slice (<u>max, average, total, site</u>) By Ports (<u>all</u>, By Site (<u>all</u>) Problems (<u>nodes, slices</u>) Viz: <u>Auto</u> Resources (<u>CPU</u>, <u>Men</u>, <u>BW</u>) Efficiency (<u>CPU</u>, <u>Men</u>) Usage (<u>Slices, Slivers, Nodes</u>)

1	Slice Name	1-min Transmit	15-min Transmit	1-min Receive	15-min Receive	Num Procs	Phys Men MB	Virt Men MB	CPU 🐕	<u>MEM %</u>	Long Ports	Snap Ports	# Nodes
1	atizona stork blackbon test	2	1	<u>0</u>	Q	15	<u>52.1</u>	166.6	0.0	<u>39</u>	1	<u>15</u>	13
2	ationa stork instal	<u>65</u>	267310	12237	202291	2001	10320.6	17288.4	1463.0	<u>689.0</u>	275	3629	<u>479</u>
3	<u>ast noku ipty</u>	18794	20268	17448	18316	188	<u>974.3</u>	<u>1868.2</u>	21.8	<u>47.6</u>	1	1	<u>45</u>
4	bin	1	1	Q	Q	4	<u>11</u>	<u>4.1</u>	0.0	0.1	1	1	1
5	brown lass	1	1	Q	Q	1	<u>14</u>	<u>2.6</u>	0.0	0.1	1	1	1
6	<u>byu pûpweb</u>	13	<u>13</u>	12	<u>13</u>	658	<u>81763</u>	121280.7	8.8	413.8	1	1	<u>177</u>
7	enu abwe	1	1	<u>1269</u>	<u>1118</u>		2207.1	5145.6	205.6	<u>126.8</u>	192	1227	<u> 240</u>
101	enu sealenni	1	1	<u>1737</u>	<u>1813</u>	<u>416</u>	<u>1952.5</u>	5316.8	29.4	<u>115.1</u>	222	901	<u>397</u>
9	columbia asherman	2	3	1	2	11	251.6	1366.1	0.0	73	1	2	2
10	<u>columbia salman</u>	<u>1143</u>	1151	560628	425742	1258	3583.4	16523.2	2077.7	<u>160.0</u>	198	238	<u>100</u>

Sword

- Find out what nodes are available
- Sword builds on CoTop/CoMon
- Can query for nodes that match your needs
- Uses an XML-RPC interface
- <u>http://sword.cs.williams.edu/</u>

Plush/Nebula

- Integrated tool for Application management
- Integrates resource discovery, application deployment and execution in a wysiwyg environment
- <u>http://plush.cs.williams.edu/nebula</u>

Plush/Nebula

Plush/Nebula

Other Third Party Services

- Brokerage Services
 - Sirius: Georgia
 - Bellagio: UCSD, Harvard, Intel
 - Tycoon: HP
- Environment Services
 - Stork: Arizona
 - AppMgr: MIT
- Monitoring/Discovery Services
 - CoMon: Princeton
 - PsEPR: Intel
 - SWORD: Berkeley
 - IrisLog: Intel

Other Third Party Services

- Content Distribution
 - CoDeeN: Princeton
 - Coral: NYU
 - Cobweb: Cornell
- Internet Measurement
 - ScriptRoute: Washington, Maryland
- Anomaly Detection & Fault Diagnosis
 - PIER: Berkeley, Intel
 - PlanetSeer: Princeton
- DHT
 - Bamboo (OpenDHT): Berkeley, Intel
 - Chord (DHash): MIT

Other Third Party Services

- Routing
 - i3: Berkeley
 - Virtual ISP: Princeton
- DNS
 - CoDNS: Princeton
 - CoDoNs: Cornell
- Storage & Large File Transfer
 - LOCI: Tennessee
 - CoBlitz: Princeton
 - Shark: NYU
- Multicast
 - End System Multicast: CMU
 - Tmesh: Michigan

• The latest tutorial (pdf slides) are available at:

http://www.planet-lab.eu/tutorial

• The live system is available at:

http://www.planet-lab.eu

References

- PlanetLab official Web site: http://www.planetlab.org/
- L. Peterson, S. Muir, Timothy Roscoe, and Aaron
- Klingaman PlanetLab Architecture: An Overview. Technical Report, PlanetLab, May 2006
- L. Peterson and T. Roscoe. The Design Principles of PlanetLab.
- Operating Systems Review (OSR), 40(1):11.16, Jan. 2006.

