PlanetLab Node Manager APl Documentation

PlanetLab Node Manager APl Documentation

Table of Contents

1. Introduction

AN a1y L nTar=1 1 [0) o WU
Delegationccooiiiiiiiiiic s
[@e) 41aT<Ta] 170) o NPT R
An Example using the PLC and NM APIL........ccccccooiiiiiiiiiiiiii

2. PlanetLab API Methods

ii

v

Chapter 1. Introduction

The PlanetLab Node Manager API (NMAPI) is the interface through which the
slices access the Node APL

Authentication

Authentication for NM operations is based on the identity of the connecting slice.
For slices whose roles are defined as 'nm-controller’, the target slice must be listed
delegated and as controlled by the calling slice.

Delegation

None

Connection

The NM XMLRPC server listens locally on every PlanetLab node at
http:/ /localhost:812.

The NM XMLRPC server can be accessed remotely using an SSH connection
through the nm-controller account. Rather than a standard shell, a special com-
mand is run that forwards all standard input to the local XMLRPC server, essen-
tially XML-RPC over ssh.

An Example using the PLC and NM API

The nm-controller slice is given a stub account such that it can be accessed over
ssh. So rather than logging into NM server listens locally on every PlanetLab
node at http:/ /localhost:812.

controller_slice_fields = {’name’ : "princeton_mycontroller’,
’instantiation’ : 'nm-controller’,
"url’ : 'http://www.yourhost.com’,
"description’ : "a brief description of this slice.’,]

controller_slice_id = api.AddSlice(plauth, controller_slice_fields)

After this, the controller owner, should both add users and nodes to this slice. As
well, the controller slice is created using the standard PlanetLab and NM mecha-
nism. So, wait at least 15 minutes before attempting to access the controller slice
on any node.

Subsequently, slices that will be delegated to this controller will be registered at
PLC. An example follows.

delegated_slice_fields = {’name’ : "anothersite_mydelegated’,
"instantiation’ : ’'delegated’,
"url’ : 'http://www.yourhost.com’,
"description’ : "a brief description of this slice.’, }

delegated_slice_id = api.AddSlice (plauth, delegated_slice_fields)

Get ticket for this slice.
ticket = api.GetSliceTicket (plauth, "princetondsl_solteszdelegated")

After the slice is registered with PLC, and your application has the Ticket, the last
step is to redeem the ticket by presenting it to the NM through the nm-controller
account. The following code formats the message correctly.

generate an XMLRPC request.
print xmlrpclib.dumps ((ticket,), "Ticket’)

Chapter 1. Introduction

Notes

Finally, this message must be sent to the NM using the controller account. It
should be possible to create a program that creates the ssh connection or to use a
library that does this automatically such as: pyXMLRPCssh'

Or, you could use something much simpler. Assuming the output from dumps ()
above, is saved to a file called ticket.txt, you could run a command like:

cat ticket.txt | ssh princeton_mycontroller@mynode.someuniversity.edu
Alternately,
p = subprocess.Popen ([’ /usr/bin/ssh’, ’'princeton_mycontroller@mynode.someuniversity.

stdin=subprocess.PIPE, stdout=subprocess.PIPE)
print >>p.stdin, xmlrpclib.dumps((ticket,), ’'Ticket’)
p.stdin.close()
print xmlrpclib.loads (p.stdout.read())
p.wait ()

The following is a stub to use as you would use the current xmlrpclib.Server()
object, but redirects the connection of SSH.

""U"XML-RPC over SSH.

To use, create an XmlRpcOverSsh object like so:
>>> api = XmlRpcOverSsh (’princeton_deisenst@planetlab-1l.cs.princeton.edu’)

and call methods as with the normal xmlrpclib.ServerProxy interface.
nwmnn

from subprocess import PIPE, Popen
from xmlrpclib import Fault, dumps, loads

all = ["XmlRpcOverSsh’]

class XmlRpcOverSsh:
def _ _init_ (self, userAtHost):
self.userAtHost = userAtHost

def __getattr__ (self, method):
return _Method(self.userAtHost, method)

class _Method:
def _ _init_ (self, userAtHost, method):
self.userAtHost = userAtHost
self.method = method

def __call___(self, =xargs):
p = Popen([’ssh’, self.userAtHost], stdin=PIPE, stdout=PIPE)
stdout, stderr = p.communicate (dumps (args, self.method))
if stderr:
raise Fault (1, stderr)
else:
return loads (stdout)

1. http://cheeseshop.python.org/pypi/pyXMLRPCssh/1.0-0

Chapter 2. PlanetLab API Methods

Chapter 2. PlanetLab API Methods

	PlanetLab Node Manager API Documentation
	Table of Contents
	Chapter 1. Introduction
	Authentication
	Delegation
	Connection
	An Example using the PLC and NM API

	Chapter 2. PlanetLab API Methods

